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Abstract 
Soil salinity expansion is an environmental challenge 
particularly in arid and semi arid regions. In order to 
evaluate the progressing extent of soil salinity in relation 
with natural and human-induced conditions, a study was 
conducted using the Landsat TM imagery. The present 
study was conducted in the Garmsar area to the East of 
Tehran. A total of 288 soil samples were analyzed to 
determine the relationship between the spectral 
reflectance and Electrical Conductivity (EC), as salinity 
indicator. Multiple regression analysis and Ordinary 
Least Square regression (OLS) were used to examine the 
relationships between EC and derived spectral to 
generate several models. In the case of derived spectral, 
mid-infrared band (TM Band-7), visible band (Band-1), 
Tasseled cap3 (Wetness index) and PCA2 (Principal 
Component Analysis) were found to be most correlated 
with the observed EC values of the surface layer of the 
soil, at 99% confidence level. The accuracy of the 
prediction model was tested using a validation set of 52 
soil samples in Eyvanekey plain, close to study area 
where the environmental circumstance consist of similar 
properties. RMSE and MAE were used to evaluate the 
performance of the map prediction quality. Results 
showed that the appropriate model could predict the soil 
salinity with precision of 4.1 and 0.49 dS m-1, 
respectively. The predicted salinity ranged from 0dS/m 
to 110dS/m. Therefore, the EC estimations were suitable 
to generate soil salinity map. Sensitivity analysis was 
tested on applied parameters that showed Band-1 and 
Band-7 were 3 and 2 times more than sensitive rather 
than other parameters respectively. The results are 
promising and certainly useful for soil salinity 
prediction. 
 
Keywords: Electrical Conductivity (EC), TM, Ordinary 
Least Square regression, Garmsar (Iran), Soil Salinity. 

  هاي آمار مکانی  کاربرد تلفیقی سنجش از دور و مدل
  شناسائی شوري خاكدر 

  3، عباس فرشاد∗2، مهدي همایی1علی اکبر نوروزي
 آموخته دکتري گروه خاکشناسی، دانشکده کشاورزي، دانشگاه تربیت مدرس   دانش - 1
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  هلند   Twente، دانشگاه ITCاستادیار گروه علوم زمین، دانشکده  - 3
  

  چکیده
محیطی عصر کنونی بـه   هاي مهم زیست گسترش روند شورشدن خاك از چالش  

بـه منظـور شناسـایی شـوري خـاك،      . ویژه در مناطق خشک و نیمه خشک اسـت 
هاي آمـار   و مدل 1388در سال  TMاي لندست  پژوهشی با تلفیق تصاویر ماهواره

ایـوانکی از افـق شناسـائی     نمونـه در دشـت گرمسـار و    288مکانی، انجام و تعداد 
، بـراي بررســی ارتبـاط بـین هــدایت    )ســانتی متـر  15-0میـانگین  (سـطحی خـاك   

الکتریکی و بازتاب هاي طیفی ماهواره، برداشت و به آزمایشگاه ارسال شد؛ آنگاه 
براي ) OLS( آنالیز چند متغیره و به ویژه رابطه همبستگی مجذور حداقل متوسط

. ماهواره و هدایت الکتریکی خاك انجام گرفـت  بررسی رابطه خصوصیات طیفی
رطوبت ( 3در این رابطه، باند هفت ماهواره با طول موج بلند و شاخص انتقال طیفی

در مدل اول و باند یک ماهواره در طول موج مرئی آبی، همـراه بـا مولفـه    ) خاك
از تغییـرات هـدایت   % 60اطمینـان، حـدود   % 99اصلی دوم در مـدل دوم درسـطح   

ارزیابی دقت دو مدل با انجام اعتبار سنجی . یکی را پیش بینی و برآورد نمودندالکتر
نقطه در دشت ایوانکی با شرایط مشابه دشت گرمسار انجام گرفت؛ پس  52بر روي 

از آن از آماره هاي متوسط مطلق خطـا و مجـذور متوسـط خطـا بمنظـور ارزیـابی       
دسـی   1/4دسی زیمنس و  49/0کیفیت و میزان خطاي دو مدل تخمینگر، با دقت 

بنابراین با نسبت پایین میـزان مجـذور متوسـط خطـا، بـرآورد      . زیمنس استفاده شد
هدایت الکتریکی براي تولید نقشه شوري خاك مناسب تشخیص داده شد؛ سپس 
ارزیابی آنالیز حساسیت بر روي عوامل موثر در دو مدل نشان داد که باند مرئی یک 

برابر نسبت به مولفه هاي  5/2و  3یانی، به ترتیب بیش از و باند هفت مادون قرمز م
در برآورد شوري خاك حساس اند، بنـابراین در   3و شاخص انتقال طیفی  2اصلی

  . استفاده از آن باید نهایت دقت را بکار برد
  

ــالیز حساســیت، دشــت گرمســار: کلمــات کلیــدي ایــوانکی، شــوري خــاك،  -آن
  ).OLS(ر حداقل متوسط و همبستگی مجذو TMماهواره لندست 
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Introduction  
Soil salinization is one of the most widespread 

land-degradation processes that substantially 

limits crop productivity, and thus the food security 

(Epstein et al., 1980). Soil salinity refers to the 

surface or near-surface accumulation of salts 

expressed in Electrical Conductivity (EC) of a 

solution extracted from a water-saturated soil 

paste (Richards, 1954; Farshad, 2008; Homaee 

and Schmidhalter, 2008). The five salinity 

classes—non saline (EC=<2 dS m-1) through 

strongly saline (EC> 16 dS m-1) — originally 

introduced by USDA (1951) is often used in soil 

survey interpretations. A slightly saline soil (EC= 

4-8 dS m-1) will not be suitable to some crops, 

whereas higher levels of salinity (EC>16 dS m-1) 

will seriously hamper plant growth. Saline soils 

are generally characterized by a pH < 8 and an 

exchangeable sodium percentage (ESP) of below 

15 (USSLS. 1969). The salinization process can 

occur either naturally (known also as ‘primary 

salinization’) or is human-induced (also known as 

‘secondary salinization’). Primary salinization 

refers to the accumulation of salts through a 

natural process, for instance when the soil parent 

material is salt-bearing, or when saline 

groundwater is the agent. Secondary salinization, 

on the other hand, refers to human interventions, 

mainly due to management failures.  

The reported 30 million ha of salt-affected 

soils in Iran, which accounts for 21 percent of the 

country’s land area (Momeni, 2007; FAO. 2008) 

occur mainly in the center, Southwest and 

Southeast of the country. These regions, 

representing one quarter of the country’s surface 

area, have very low productivity compared to the 

rest of the country. The climatic conditions and 

their geopedological (geomorphology, lithology, 

hydrologic condition and soil) setting are the 

major causes of the widespread salinization 

(Pakparvar, 2004; Momeni, 2007; Abbassi, 

2009). However, the role of human activities, 

such as, poor agricultural management practices, 

salt mining and construction of roads and 

reservoirs (Pakparvar, 2004) that lead to the 

secondary salinization remain an important issue. 

Mapping and monitoring is needed to generate 

temporal and reliable information on the nature, 

spatial extent, and temporal behavior of salt-

affected soils in order to plan conservation and 

rehabilitation measures (Dwivedi et al., 1997; 

Metternicht and Zink, 2003). 

 

Soil Salinity Mapping and Monitoring  
Salts (salinity) can occur in different sections of 

the soil profile; at the surface, near-surface or 

farther down in the subsoil. The occurrence of 

salts on the surface, mostly under low-rainfall 

and high-evaporation conditions, appears in 

various forms, such as white efflorescence, salt 

crusts, non-aggregated brown powder, black salt 

deposits and evaporative salt crystals. 

Existing approaches to soil-salinity mapping 

and monitoring can be broadly put into two 

groups, namely ‘proximate sense (ground-

based)’ and ‘remote sensing based (air-born or 

space-born)’ (Metternicht and Zink, 2009). The 

proximate approach includes field and laboratory 

methods, whereas the remote sensing-based 

approach includes use of aerial photographs 

and/or satellite data. 

Remote sensing techniques have been used to 

map soil salinity directly from bare soil, and 

indirectly from vegetation in a real-time and 
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cost-effective way for large-area monitoring 

(Dwivedi et al., 2001; Metternicht and Zink, 

2003). The lack of vegetation or sparsely 

distributed vegetation on salt-affected soil 

surfaces makes it possible to detect the affected 

areas (Howari, 2003). A variety of remote 

sensing data has been used to identify and 

monitor salt-affected areas, including aerial 

photographs, video images, infrared 

thermography, visible and infrared multispectral, 

microwave images and hyperspectral imagery 

(Metternicht and Zink, 2009). Menenti et al 

(1986), Darvishsefat et al. (1999) and Alavi Panah 

and Zehtabian (2002) made use of Landsat 

Thematic Mapper (TM) bands 1 through 7 for 

identifying salt minerals (they found that Landat 

bands particularly SWIR bands has more strength 

to salinity detection). Saha et al. (1990) and 

Naseri (1998) recommend TM bands 3, 4, 5, and 7 

for salt detection in Outarpradash in India and in 

the Gorgan plain in Iran, respectively. Madrigal et 

al.(2003) and Verma et al. (1994) detected soil 

salinity of cropped areas by correlating soil EC, 

determined at point sites within previously 

designated fields, to spectral values extracted from 

TM bands 2, 3 and 4, however, the integration of 

thermal band-6 led to solve the problem of 

spectral similarity in the latter case.  

Rapid indirect techniques of inferring 

salinity, such as EC mapping are widely used as 

an alternative to laboratory measurements of soil 

solutions ions, which are time and resource 

demanding (Farshad, 2008).  

It is repeatedly concluded that detection of 

soil degradation, particularly soil salinity, by 

conventional means of soil surveying is not only 

quite time demanding (Ghabour and Daels, 

1993), but also quickly outdated, whereas remote 

sensing data and techniques offer the possibility 

for mapping and monitoring these processes 

more efficiently and economically (Shresta and 

Farshad, 2009). However, to assess the feasibility 

and the accuracy of satellite images to map and 

monitor salinity must be cross-checked with field 

measurements (Farshad, 2008). In this study, 

conducted in the Garmsar alluvial fan to the East 

of Tehran, remote sensing data and techniques 

are employed to determine the spatial extent and 

magnitude of salt-affected areas, whereas GIS-

based facilities and modeling are used for the 

purpose of predicting the trend of salt movement 

in the soil.  

 

Study Area and data 
Garmsar is a city in Semnan Province, located 

about 82km Southeast of Tehran. It lies on an 

extensive alluvial fan at the edge of the Dasht-e 

Kavir, Iran's largest desert. The study area 

includes a part of the Garmsar alluvial fan and a 

smaller area in the Eyvanekey alluvial fan, which 

lies to the west of Garmsar, totally covering about 

54000 km2. Elevation ranges from 161 to 244 m 

a.s.l. The climate is very dry (Aw according to the 

Köppen classification), with an annual rainfall of 

about 120 mm/year, which is negligible, as 

compared to the potential evapotranspiration (ET) 

of 1200 mm/year. The major water sources are the 

Hablerood (river) and a number of privately 

owned deep wells. The Hablerood, which flows 

through the area and finally into the salt lake in the 

Kavir (Fig. 1), plays also an important role in 

recharging the aquifers.  



¡     ¡ 
  1390پاییز   ،ـطی  سال نهم،  شماره اولیـمح عـلـوم 

ENVIRONMENTAL  SCIENCES  Vol.9,  No.1, Autumn 2012 

62 

Figure 1. Location map depicting Garmsar and Eyvanekey (Source: Google Earth, Year 2009). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The fans and the glacis (Quaternary deposits) 

form the piedmont landscape, at the skirt of the 

heights, which stretch East to West in the North 

of the area, are composed of shale, gipsiferous 

marls, mudstone with sandstone and 

conglomerate, partly with gypsum rock 

formations. The lithological formations have led 

to mining salt (some 30 mines), sodium sulfate 

(14 mines), gypsum (6 mines) and many other 

minerals and rocks. It is reported that 70% of the 

salts and 30% of the sodium sulfate needed 

within the country is mined in Garmsar. Soils of 

the heights are dominantly Calcic Aquisalids and 

Typic Haplosalids, followed by Typic 

Torriortents along the lower slopes. The typical 

saline soils fall under Noreddin-Abad soil series 

(Pakparvar, 2004; Abbassi, 2009).  

Due to its strategic position and the natural 

richness, Garmsar has had a long turbulent 

history. It was a disputed border town between 

the Medes and the Parthians (around 600 years  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B.C.) and this was followed by many more 

disputed changes, to name only a few during the 

Sassanid (3rd through 6th centuries), the 

Samanid, the Ghaznavid, the Mongol, the 

Safavid and the Qajar periods. The settlers in the 

area are composed of some 20 tribal groups from 

different origins, such as Arab, Kurdish, Turkish, 

Lurrish, etc. Some tribal groups have preserved 

their pastoral and tribal methods of production. 

The Ossanlu, of Arab origin from Aman and 

Najd, are made up of several tribes and they 

chose cattle breeding once they arrived in the 

region, although they were occupied with 

cultivation before moving into the new area. The 

dairy and the meat produced by the nomads 

amount respectively to about 120 ton and 300 ton 

per year, traded in local markets. The issue of 

transhumant which is still practiced also plays an 

important role in soil degradation. 

At present, both professions are exercised by 

the farmers. The dominant irrigated fields are 
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Figure 2. Distribution of the observation points in the Garmsar fan, Aug.2009. 

alfalfa, corn, wheat, barley in the uplands and 

sugar beet, cotton, and melon are major crops 

occupying the low lands. Beside some of the 

agricultural products such as wheat, barley, 

cotton, pomegranate, vegetables and melons, 

which are exported to some of the Persian Gulf 

States and to India, Ukraine, and a few African 

countries, salt, sodium sulfates and some other 

chemical substances, mined in the area, are also 

exported. 

 

Materials and Methods  
The foreseen research program, including this 

study, should ultimately lead to tracking down of 

salinization as a degradation process. The 

program comprises several GIS-oriented 

methods, next to the use of remotely sensed data 

and techniques, and the required fieldwork, that 

is an integrated approach to salinity mapping and 

prediction.  

This paper is meant to cover the part that is 

allocated to the identification of soil salinity, 

wherein several investigations are applied; an 

integrated approach of remote sensing and spatial 

statistical modeling.  

 

Soil Sampling  
In total, 288 soil observations were made on a 1×1 

km grid network, of which 236 in the Garmsar 

alluvial fan (Fig. 2) and the remaining 52 in the 

Eyvanekey fan, with similar physiographic 

conditions. The field survey was conducted in 

August 2009, approximately corresponding with 

the date of the remote sensing data acquisition. 

The coordinates of the observations were recorded 

using a Global Positioning System (GPS; Garmin 

etrex vista). The soil samples that were collected 

from the surface horizons (0-15 cm) were 

analyzed for a number of physical and chemical 

properties, of which EC plays a key role in this 

part of the study. 
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In order to generate the topsoil salinity map, the 

mean of all EC-values within 0-15 cm depth, 

calculated for all the observation points, were used.  

 

Extraction of Spectral Reflectance from 

Remote Sensing Data  
The downloaded Landsat TM scene (Path 164 

Row 36) of August, 11 2009 (http://edcsns17. cr. 
usgs.gov/cgi-bin/EarthExplorer), consisting of 7 

bands with the ground resolutions (pixel size) of 

30 m for the bands 1 through 5 and 7, and of 60 

m for the band 6 was imported into ERDAS 

IMAGINE image processing software to 

generate a ‘layer stack’ for further treatments. 

The image was of good quality and no 

atmospheric corrections were performed. 

Geocoding, with an accuracy of less than one 

pixel (RMSE=0.87), was performed using 

topographic maps at a scale of 1/25000. Spectral 

values of the 7 original and 20 derived indices 

for corresponding observation sites were 

extracted making use of the “intersect values by 

point” command in ArcGIS (see the derived 

bands and the indices in Table 1).  

 

Preparation of Spectral data  
Besides the vegetation and salinity indices, 

Principal Component (PC) and Tasseled cap 

(brightness, greenness, wetness) indices were 

built in the “model builder” in ERDAS imagine 

in the graphical model (gmd) format. The 

derived images were overlaid by the image 

containing the soil sample sites. Pertaining 

spectral values were appended in the soil sample 

attribute table as “field column” (Table 1), 

making use of the “extract raster point value” 

command in ArcGIS. 

Data Analysis  
Twenty seven variables, consisting of 7 original 

bands, 3 PC and 6 tasseled cap transformations, 5 

vegetation and 6 salinity indices were employed 

to examine their relationship with the EC values 

that were measured in the laboratory. The 

variables were selected according to their relative 

importance in the determination of salinity.  

As the Pearson test (SPSS software, v.17) 

proved a high (at P<0.001) correlation, ‘factor 

analysis’, which is a multivariate technique for 

examining the underlying patterns or relationships 

between the variables (Hair et al., 1992), it was 

applied to reduce the number of variables. 

Considering that variable independence is a 

requisite assumption, principal component 

analysis which reconstitutes the correlated 

"independent" variable and set them into a set of 

truly independent new variables (factors) was the 

next step. The analysis was performed using the 

orthogonal extraction method, which assumes 

that the extracted factors are statistically 

independent from each other. The first two 

components (Fig. 4) were selected on the basis of 

the cumulative variance percentage and an Eigen 

value of greater than one. A multiple regression 

analysis then helped to examine the relationship 

between the variables (in each of the two 

components) with higher correlation with EC, 

and higher-factor loadings. The technique that 

was followed to identify the significant predictor 

or independent variables was the stepwise 

forward estimation of sequential search. This 

process includes the predictor variables with 

higher partial correlation coefficients, in a 

sequential manner. This was separately examined 
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Table 1. Descriptive data. 

Variable Description 
Mean 

Std. 

Deviation 

Correlation 

with EC (r ) 

EC_TOP Electrical Conductivity of Soil dS/m 11.674 7.424 100 

SI1 Salinity Index 1 (√G×R) 141.051 20.736 .596** 

SI2 Salinity Index 2 (√G2+R2+NIR2) 156.878 24.335 .648** 

SI3 Salinity Index 3 (√G2+R2) 114.865 27.025 .734** 

NDSI Normalized Differential Salinity Index (R-NIR/ R+NIR) -0.076 0.128 .610** 

BI Brightness Index (√ R2+NIR2) 141.051 20.736 .596** 

NDVI Normalized Differential Vegetation Index(NIR-R/ NIR+R) 0.076 0.128 -.610** 

SAVI Soil Adjusted Vegetation Index(NIR-R/ NIR+R+L) 0.114 0.191 -.610** 

SATVI Soil Adjusted Total Vegetation Index -84.901 2.943 -.541** 

MSAVI Modified Soil Adjusted Vegetation Index 0.119 0.191 -.658** 

EVI Enhanced Vegetation Index -0.190 0.301 .637** 

NDMI Normalized Differential Moisture Index -0.143 0.093 -.549** 

BAND1 Reflectance value of Band 1 (Blue visible) 114.818 20.692 .763** 

BAND2 Reflectance value of Band 2 (Green visible) 68.309 14.549 .746** 

BAND3 Reflectance value of Band 3 (Red Visible) 92.284 23.029 .725** 

BAND4 Reflectance value of Band 4 (Near Infrared) 105.343 13.515 .183** 

BAND5 Reflectance value of Band 5 (Middle Infrared) 142.076 26.714 .669** 

BAND6 Reflectance value of Band 6 (Thermal) 170.284 5.822 .536** 

BAND7 Reflectance value of Band 7 (Far Infrared) 79.767 20.180 .716** 

PCA1 Principal Component 1 304.357 39.294 .735** 

PCA2 Principal Component 2 0.995 15.744 -.648** 

PCA3 Principal Component 3 1.624 18.655 -.647** 

TAS1 TASSELED CAP1 (Brightness) 240.433 38.536 .703** 

TAS2 TASSELED CAP2 (Greenness) -24.409 21.498 -.705** 

TAS3 TASSELED CAP3 (Wetness) -29.963 11.977 -.549** 

TAS4 TASSELED CAP4 43.764 6.165 .668** 

TAS5 TASSELED CAP5 -18.295 6.680 -.473** 

TAS6 TASSELED CAP6 -2.731 1.471 -.436** 

**Significant at the 0.01 probability level 

 

for all the components, in three groups 

(components) of respectively 11, 13 and 3 

variables, including vegetation indices, tasseled 

cap 2 (greenness) and 3 (wetness), Landsat TM 

bands 6 and 7 and second component including 

Landsat TM bands 1 to 5, PCA 1 to 3, Tasseled 

cap 1 (Brightness) and salinity indices (SI1, SI2, 

SI3, NDSI, NDMI). The third component 

including the three tasseled cap images 4, 5 and 6 

were left out of the analysis, as they form only 

3% of the total variance.  

 

Results  
Analysis of the Variables yielded the mean value 

(M), standard deviation (SD) and correlation 

coefficient (r) of each variable with the observed 

EC (Table1). 
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Figure 3. Scree plot. 

As shown in Table 1, the highest correlation 

with EC is for B1 (r .763) followed by B2 (.746), 

PCA1 (.735), SI3 (.734), B3 (.725), B7 (.716), 

Tasseled cap2 (-.705), Tasseled cap1 (.703), and 

the lowest value (.183) is for B4. The table also 

shows that the vegetation indices are negatively 

correlated with EC. Out of the 27 variables, with 

P < 001 for the entire set (Clifford et al., 1989), 

three factors, with Eigen value of greater than 

one, could be extracted after examining the Scree 

plot (Fig. 3) under normalized Varimax rotation 

while carrying out factor analysis. The 

cumulative variance explained by the first two 

components was 81 percent with a cumulative 

variance of 42 percent for the first component 

and 39 percent for the second one. The variables 

under component 1 and 2 that showed higher 

factor loadings of > 0.7 were considered eligible 

for the regression analysis. Another group of 

variable, tasseled cap 4, 5, 6 under component 3, 

is omitted. Finally, the remaining 24 variables 

were selected based on either higher factor 

loadings and/or higher correlation with EC to 

include in the final regression analysis to 

examine the significant predictors of EC.  

 
 

 

 

 

 

 

 

 

 

 

EC and Variables in component 1  
Stepwise regression was run to examine the 

relationship between EC and the eleven predictor 

variables (two original Landsat bands 6, 7, five 

vegetation indices, and the four derived bands, 

namely Tasseled cap 2, 3, NDMI and NDSI). 

Following the regression estimates of fitting a 

multiple linear regression models (Hastie et al., 

2001), eight models were fitted in the regression. 

Model 2 (Band-7 and Tasseled cap3) turned out 

to have the best variation inflate factor (of less 

than 10), and the highest R2. A P-value of .000 

indicates that there is a statistically significant 

(Draper and Smith, 1998) relationship between 

the selected variables at the 99 percent 

confidence level. The R2 indicates that the model 

explains about 58 percent of the variability in 

EC. Although the variation explained by the 

model is moderate, but it demonstrates that the 

usefulness of the Landsat band 7 as compared to 

the other bands for detecting soil salinity. The 

standard error of the estimate (SE), which shows 

the Standard Deviation (SD) of the residuals, was 

4.836. Furthermore, slightly high Durbin-Watson 

(DW) statistics (1.913) gives an indication of 

Component1 and 2 are more than 1Eigenvalue 



¡     ¡ 
  1390پاییز   ،ـطی  سال نهم،  شماره اولیـمح عـلـوم 

ENVIRONMENTAL  SCIENCES  Vol.9,  No.1, Autumn 2012 

67 

some autocorrelation among the variables. Based 

on the selected model (formula1), an EC 

prediction map was drawn by GIS application and 

assorted in 5 standard EC classes (Fig. 4 left). 

 
EC= -14.55+0.476*Band7+0.393Tasseled cap3      (formula 1) 

 

EC and Variables in Component 2 
In the same way, the stepwise regression was run 

this time with the 13 predictor variables (five 

original Landsat bands 1 through 5, Salinity 

indices -SI1, SI2, SI3-, brightness index (BI), PCA 

1, 2, 3, and Tasseled cap1). This time, Band1 and 

PCA2 were turned out to be statistically 

significant. The R2 indicates that the model 

explains about 60 percent of the variability in EC 

and Standard Deviation (SD) of the residuals, at 

4.72. Based on the selected model (formula 2), an 

EC prediction map was drawn by GIS application 

and assorted in 5 standard EC classes (Fig 4 right). 
 

EC= -31.66+ 0.376*Band1+ 0.147*PCA2           (formula2) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Discussion 
The EC variability explained by these models is 76 

and 77 percent. Further statistical treatments show 

that: (1) there is no autocorrelation in the residuals; 

(2) both models and the contained variables are 

statistically significant at 99 percent confidence; (3) 

the negative intercept of the models is a indication 

of slight under-estimation; and (4) the Partial 

Correlation Confidence (PCC) indicates that Band 

1 is very strongly correlated with EC as compared 

to the other bands, which were found to be only 

moderately correlated. The PCC measures the 

strength of the relationship between the dependent 

variable (EC) and each of the predictor variables, 

while the effect of the other predictor variables in 

the model is held constant. The adjusted coefficient 

of determination (Adjusted R2), which is useful for 

drawing a comparison between the models 

containing different numbers of predictor variables 

(Hair et al., 1992), ranged from 0582 to 0598.  

  

Salt Lake 

Salt Lake  

dSm-1 

Garmsar Fan  Garmsar Fan 

Figure 4. EC map extracted by Model 1 (left) and model 2 (right). 
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Table 4. Summary of OLS Results in components 1 and 2. 
Component 1 (Band 7 and Tasseled cap 3) 

Variable Coefficient Std t-Statistic Probability Robust_SE Robust_t Robust_Pr VIF 
Intercept -14.549 1.546 -9.409 0.00000* 1.633 -8.908 0.00000* ------ 
Band7 0.476282 0.0384 12.411 0.00000* 0.04432 10.7466 0.00000* 6.025 

Tas. Cap3 0.392781 0.0646 6.075 0.00000* 0.0685 5.7328 0.00514* 6.025 
Component 2 (Band 1 and PCA2) 

Variable Coefficient Std t-Statistic Probability Robust_SE Robust_t Robust_Pr VIF 
Intercept -31.6604 4.305 -7.353 0.0000* 4.1060 -7.7107 0.0000* ------ 
Band1 0.3761 0.0370 10.161 0.0000* 0.0358 10.502 0.0000* 6.173 
PCA2 0.1469 0.0486 3.0204 0.0028* 0.0520 2.8246 0.0051* 6.173 

 

OLS Diagnostics in components 1 and 2 
Adjusted R-Squared [2]: 0.575601 Adjusted R-Squared [2]:  0.594706    
Akaike's Information Criterion (AIC) [2]:1416.651140 Akaike's Information Criterion (AIC) [2]:1405.78045 
Joint F-Statistic [3]:  160.361928 Joint F-Statistic [3]:   173.413078 
Joint Wald Statistic [4]: 321.779504 Joint Wald Statistic [4]:  331.959979 
Koenker (BP) Statistic [5]: 17.113055 Koenker (BP) Statistic [5]:  18.025068 
Jarque-Bera Statistic [6]: 3.485322 Jarque-Bera Statistic [6]:  3.972697 
Notes on Interpretation 
* Statistically significant at the 0.05 level.                                
[1] Large VIF (> 7.5, for example) indicates explanatory variable redundancy.   
[2] Measure of model fit/performance.                                           
[3] Significant p-value indicates overall model significance.                   
[4] Significant p-value indicates robust overall model significance.            
[5] Significant p-value indicates biased standard errors; use robust estimates. 
[6] Significant p-value indicates residuals deviate from a normal distribution. 

Higher coefficients indicate the relative 

superiority of the model containing a higher 

number of predictor variables, which may have 

little practical implication, if the range of 

explained variability is not wide. In order to 

confirm the applied statistical treatments and to 

select the appropriate model, the OLS (Ordinary 

Least Square Regression) tool in ArcGIS was 

adopted. This helps  test the models for 

heteroskedasticity (inconsistence of residual 

variance) and non-stationarity (regional variation 

of independent variable) (Fotheringham et al., 

2002). OLS provides a global model of the 

variable or process and creates a single 

regression equation to represent that process 

(Table 4) (Andri Baltensweiler, 2010). The 

Koenker’s studentized Bruesch-Pagan test 

indicated that our model violated the  

 

homoskedasticity assumption and it revealed 

non-stationarity. ArcGIS computes standard 

errors that are robust in regard to these problems. 

The robust probabilities were then consulted to 

determine the significance of the explanatory 

variables. Redundant variables have already been 

identified by the variance inflation factor and 

removed from the analysis. The residuals were 

normally distributed. Finally, the OLS model 

was controlled for spatial autocorrelation of the 

regression residuals. The Moran’s I statistic 

(Mitchell, 2005) showed that the residuals were 

random, and that there was no significant 

clustering on the residuals (Moran’s Index = 

0.03, p = 0.4, Z = 0.82). Furthermore, the 

Hotspot analysis using the Getis-Ord Gi* statistic 

confirmed that there was no significant over- or 

under- prediction (Residuals were randomly 

distributed; not clustered) (Fig. 5) 
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Figure 5. Residual map (Blue point shows under-prediction and Red point shows over-prediction). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Validation 

In order to evaluate the model performance a 

cross-validation method in Eyvanekey Plain was 

applied. Eyvanekey plain consists of similar 

environmental characteristics, compared to the 

study area in this research. All 52 sample points 

were employed for model validation. Two 

resulted models were tested for 52 soil samples. 

MAE (Mean Absolute Error) and RMSE (Root 

Mean Square Error) are compared in Table 6. 

Model-2 (B1-PCA2) performs better than 

Model-1 (B7-Tasseled 3) (Table 5).  

 
Table 5. Cross validation 

Mode1(B7-TASSEL3) Model 2(B1-PCA2) 

MAE 0.58 0.49 

RMSE 4.43 4.10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

To analyze the sensitivity of the predicted 

parameters in these models, a sensitivity analysis 

was performed by sensitivity index approach.  

 

Sensitivity of Predicted Parameters to Soil EC 

The parameters that were tested in the sensitivity 

analysis for predicted soil EC were Band-1 and 

Band-7, PCA2 and Tasseled cap3. Of the two 

parameters/variables that were tested for 

sensitivity in soil EC prediction, Band-7 and 

Band-1 came out as the most sensitive 

parameters, based on the sensitivity index (eq1). 

Band-1 proved to be more than three times more 

sensitive  than PCA2 in the model 2, and Band-7 

more than two times more compared to Tasseled 

cap3 (Figs. 6 and 7). Thus, efforts and resources 
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Table 6.  Sensitivities of parameter variation in model 1. 
  Parameters 

Model 1  

Tasseled 3 Band-7 Predicted EC 
Change in 
prediction 

Sensitivity 
Index 

Base run 0 -49 113 19.98 

Variation (% of base 
value) band 7 

+20 
constant 135.6 30.74 0.5384 2.692 

 -20 constant 90.4 9.22 -0.5384 -2.692 

Variation (% of base 
value) Tasseled 3  

+20 
-39.2 constant 23.83 0.193 0.963 

 -20 -58.8 constant 16.13 -0.193 -0.963 

 
Table 7. Sensitivities of parameter variation in model 2. 

Model 2  
PCA2 Band-1 Predicted EC 

Change in 
prediction 

Sensitivity 
Index 

Base run 0 -10 131 16.126   

Variation (% of base 
value) band 1 

+20 
constant 157.2 25.9772 0.6109 3.054446 

 -20 constant 104.8 6.2748 -0.6109 -3.05445 

Variation (% of base 
value) PCA2 

+20 
-8 constant 16.42 0.0182 0.091157 

 -20 
-12 constant 15.832 -0.0182 -0.09116 

 

should be spent on quantifying these parameters 

for an accurate and reliable salinity prediction.  

The magnitude of output variations is the 

result of the variation in model input parameters. 

When a selected parameter is given a higher or 

lower value by a certain percentage and the other 

parameters are kept constant, the output values 

varied by the same percentage. The range of 

parameter variations was determined primarily in 

preliminary runs according to the sensitivities of 

selected parameters. The Lane and Ferreira 

criterion (1980) was applied to define whether or 

not a tested parameter or input variable was 

sensitive; a model parameter or input variable is 

defined as sensitive if errors in that parameter or 

input variable cause errors in output variables as 

large as or larger than the input parameter errors. 

The sensitivity index (Si) for a parameter or 

variable was defined as:   

Si=(Pi-Pib)/(Pib)*100 

Where: Pi is the prediction with varying 

parameter/variable i, and Pib is the same 

prediction with the corresponding base value. 

This sensitivity index is different from the 

commonly used sensitivity coefficient, which is a 

partial derivative representing the change in model 

outputs resulting from a change in a model input. 

The problem with the usual sensitivity coefficient 

is that the magnitude of sensitivity depends on 

both the dimension and units of parameters. One 

may calculate sensitivities for two parameters that 

are numerically equal; however, they may not be 

dimensionally identical. Thus, simply comparing 

numerical values (sensitivity coefficients) 

calculated according to the derivative may be 

inadequate (Tables 6 and 7). 
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Figure 6. Sensitivity index for parameters in model-1. 

  

 

Figure7. Sensitivity index parameter model 2. 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Conclusions and Recommendations 
The mapping and monitoring of soil salinity is 

required for sound agricultural planning to ensure 

food security. However, the process of mapping 

salt-affected areas is often difficult as salt may 

exist in many forms even in the case of those 

visually appearing on surface. This becomes even 

more difficult in soils with salt concentrated in the  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

substratum, which may eventually move to the 

soil surface due to capillary rise.  

EC measurement is customary practice for 

defining and assessing soil salinity (Homaee and 

Schmidhalter, 2008). Spectral information that 

can be extracted from remote sensing data is a 

useful indicator of EC. Among others, mid-
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infrared band (Landsat band-7) and visible band 

(band-1) are strongly associated with the observed 

EC. Among derived bands, Tasseled cap 3 and 

PCA2, which have a very high association with 

EC, are significant predictors of EC. 

Developed salinity prediction models, 

particularly the ones containing spectral 

variables, can be useful to infer soil salinity over 

large areas using remote sensing data. 

Considering that the soil and remote sensing data 

that were used in this study represent only one 

image of the area in the year, i.e. the middle 

period of the dry season, the use of multi-

temporal soil and remote sensing data within a 

year and over a number of years must be 

recommended for monitoring purposes.  
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