اعتبارسنجی و پیش بینی سناریو محور تغییرات کاربری زمین های حوضه آبخیز بیرجند در افق 1404

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه محیط زیست، دانشکده محیط زیست، دانشگاه بیرجند، بیرجند، ایران

چکیده

سابقه و هدف:
در حال حاضر آشکارسازی و مدل­سازی تغییرات کاربری زمین ­ها با استفاده از تصویر­های ماهواره­ای ابزاری سودمند برای درک تغییرات آینده محیط­ زیستی مرتبط با فعالیت ­های انسانی بحساب می ­آیند. پایش این تغییر­ها، ما را در درک درست از روند توسعه در گذشته و الگوهای آتی یاری می­ دهد و ابزار بسیار مهمی برای تجزیه و تحلیل دلیل­ ها و پیامدهای شکل­ گیری و گسترش کاربری ­ها بمنظور درک بهتر عملکرد سیستم‌های پوشش زمین­ ها، مدیریت پوشش زمین­ ها و شناسایی پهنه­ های حساس شناخته می­ شوند. ولی بکارگیری الگوهای پیش ­بینی شده نیازمند اعتبارسنجی و اصلاح مواردی است که مدل، قادر به پیش ­بینی آن‌ها نیست. در این پژوهش با استفاده از پردازش تصویر­های ماهواره­ای و مدل زنجیره خودکار مارکوف، تغییر­های کاربری زمین­ ها برای حوضه آبخیز بیرجند در افق 1404 مدل‌سازی ، پیش ­بینی و اعتبارسنجی شده است.
مواد و روش­ ها:
درتحقیق حاضر با استفاده از تصویر­های لندست 7 ، سال 2000 و 2004 و لندست 8، سال 2014 به آشکارسازی و مدل‌سازی تغییرات کاربری زمین­ ها پرداخته شده‌ است. سپس به­ کمک مدل زنجیره خودکار مارکوف، تغییر­های کاربری زمین­ ها در سال 2014 پیش ­بینی و مدل­سازی شده است. به­ منظور اعتبارسنجی روش مدل­سازی، میزان توافق و توافق نداشتن نقشه پیش ­بینی و نقشه طبقه­ بندی شده براساس ضرایب مختلف کاپا (کاپای استاندارد، کاپای مکانی در سطح سلول و کلاس) برآورد شده است. با اعتبارسنجی صورت گرفته تغییر­ها در سال 2024 معادل با افق موردنظر با اعتبار نسبی بالایی، پیش­بینی شد. در نهایت به­ کمک شناسایی پیشران­ه ای اصلی توسعه، چهار سناریوی توسعه تدوین شد و از بین آن‌ها سناریوی محتمل مبتنی بر رشد جمعیت و میزان مساحت مورد نیاز انتخاب شد.
نتایج و بحث:
نتایج گویای این پژوهش در فرآیندهای آشکارسازی، اعتبارسنجی مدل، پیش­ بینی و اصلاح آن توسط سناریونویسی نشان داد که مساحت افزایش یافته در کاربری کشاورزی 0.525 کیلومتر مربع و کاربری شهری 18.9 کیلومتر مربع خواهد بود و با صحت بالای 98 درصد شبیه ­سازی تغییرات کاربری آینده انجام شده است. از سویی دیگر با توجه به برآیند پیشران­ ها و مصاحبه با خبرگان متخصص، احتمال رخ دادن سناریوی شماره 3 (وقوع 70% تغییرات ادامه وضع موجود) بیشتر خواهد بود. همچنین از مقایسه ­ی دو نقشه در واحدهای مختلف روندی حاصل شد، که نشان­دهنده­ ی آن بود که با افزایش واحدهای مقایسه و دانه ­درشت ­شدن آن، مقدار توافق نداشتن موجود به سمت توافق بیشتر پیش می­ رود. همچنین ملاحظه می ­شود، کاپای مکانی در سلول و کاپای مکانی در کلاس و کاپای عدم اطلاعات دارای اعداد یکسان و متفاوت از کاپای استاندارد هستند.
نتیجه­ گیری:
 با توجه به نتایج به­ دست آمده، بعد مکانی- فضایی برای پیشرفت شهری سمت شمال شهر و به ­درستی تشخیص داده شده است. در عین حال میزان تغییرات کاربری کشاورزی و شهری- روستایی به میزان کمی، کمتر پیش ­بینی شده که در مورد کاربری کشاورزی این میزان را می ­توان به احداث تصفیه ­خانه آب و فاضلاب شهر نسبت داد و در مورد کاربری شهری این میزان به رشد شهری متفاوت در بازه ­های مورد بررسی برمی‌گردد. همچنین با وجود بالابودن اعتبار و دقت پیش ­بینی، برخی پیشران­ های اصلی توسعه دارای قابلیت پیش­ بینی در آینده، توسط مدل را نداشته اند. بنابراین پیشنهاد می ­شود در پژوهش ­های مربوط به پیش ­بینی تغییرات، افزون بر اعتبارسنجی شیوه مدل­سازی ، تنها به نتایج نهایی بسنده نشود، بلکه با درنظر گرفتن پیشران­ های توسعه به اصلاح نتایج حاصل از مدل نیز اقدام شود.

کلیدواژه‌ها


عنوان مقاله [English]

Scenario-based validation and prediction of land use changes in Birjand watershed in 1404

نویسندگان [English]

  • Elham Yusefiroobiat
  • Fatemeh Jahanishakib
Department of environment, Faculty of environment, University of Birjand, Birjand, Iran
چکیده [English]

Introduction:
Nowadays, detection and modeling land use changes using satellite imagery is a useful tool for understanding future environmental changes associated with human activities. Monitoring these changes will help us understand the development process in the past and future patterns. Land-cover change models are important tools for analyzing the causes and consequences of shaping and expanding land uses for a better understanding of the performance of land cover systems and management and identifying sensitive areas. But applying the predicted patterns requires validation and correction of cases that the model can’t predict. In this research, using satellite imagery processing and Cellular Automated Markov chain (CA-Markov) model, agriculture and urban land use changes of Birjand watershed were modeled and predicted in 1404.
Material and methods:
In the present study, first land use changes were revealed and modeled using  Landsat 7 in 2000, and Landsat 8 in 2014. Then, using the CA-Markov Model, land use changes in 2014 were predicted and modeled. To validate the modeling method, the consistency and inconsistency between the predicted map and the classified map were estimated on different kappa (Kstandard, Kno, Klocation, and KlocationStrata) coefficients. Validation of the changes in 2024 was predicted with high relative validity. Finally, by identifying the main drivers of developments, four scenarios of development were developed. A probable scenario based on population growth and the required area was selected among them.
Results and discussion:
The results of this research showed the detection, validation, prediction and correction of the model by scenario analysis. The increase in agricultural and urban lands will be 0.525 and 18.9 km2, respectively. Validating with an accuracy of over 98%, the simulation allowed prediction of future land use changes in 2024. From different scenarios, the probable scenario with an occurrence probability of 70% of the forecasted changes (scenario 3) resulting from the CA-Markov was selected according to the documentations and experts' opinions. Also, a comparison of two maps in different units resulted in a trend that by increasing the comparison units and coarse grain, the amount of the disagreement would go further towards the agreement. It is noted here that the Klocation in the cell, KlocationStrata, and Kno had the same numbers, and different from the Kstandard.
Conclusion:
According to the results, the spatial dimension of urban development in the north of the city was correctly identified. At the same time, the level of agricultural and urban-rural changes was less predicted. In the case of agriculture land use, this lower prediction was due to the construction of urban sewage treatment and in the case of urban land use, this difference can also be attributed to different urban growth in different periods. Also, despite the credibility and accuracy of prediction, some of the main drivers of development have no predictability by the model in the future. Therefore, it is suggested that research in predicting changes, in addition to validating the modeling approach, not only satisfy the final results, but also modify the results of the model by taking into account development drivers.

کلیدواژه‌ها [English]

  • Cellular automated markov
  • Validation
  • prediction
  • Scenario
  • Birjand watershed
  1. Ahadnejad, M; Rabet, A., 2010. Evalution and forcast of Haman Impacts Based on Land use Changes Using Multi Temporal Satellite Imagery and GIS: A Case Study on Zanjan, Iran (1984-2009). Proceedings of The Joint International Conference on Theory, Data Handling and Vodelling in Geo Spatial Information Science, Hong kong.
  2. Ali Mohammadi Sarab, A., Motakan, A. and Mirbageri, B., 2010. Evaluation of the Efficiency of Cellular Automata Model in Simulation of Urban Distribution in the Suburbs of Southwest of Tehran, Space planning and design. 2, 82-102 pp.( In Persian)
  3. Bandhold, H. and Lindgren, M., 2003. Scenario planning, the link between future and strategy. Palgrave Macmillan Publisher.
  4. Bhatta, B., Saraswati, S. and Bandyopadhyay, D., 2010. Quantifying the degree-of- freedom, degree-of-sprawl, and degree-of-goodness of urban growth from remote sensing data. Applied Geography, 30, 96-111.
  5. Bryasulys, H., 2009. Analytical patterns of land use change. Translation by Rafiean, M., Mahmoudi, M. Azarakhsh Press. Tehran, Iran .440 pp.( In Persian)
  6. Clarke, K.C. and Gaydos, L.J., 1998 . Loose-coupling a cellular automaton model and GIS: long-term urban growth prediction for San Francisco and Washington/Baltimore. International Journal of Geographical Information Science. 12(7), 699-714.
  7. Courage, K., Masamu, A., Bongo, A. and Munyaradzi, M., 2009 . Rural sustainability Under threat in Zimbabwe—simulation of future land use/cover changes in the Bindura district based on the Markov–cellular automata model”, Appl. Geogr. 29, 435–447.
  8. Ebrahimi, F. and Kamali, A, 2017. Predict possible change in land use by using satellite imagery and CA- Markov model. Journal of Water and Soil Conservation. 24(4), 259-271. ( In Persian)
  9. Fatemi, S.A. and Rezaei, Y., 2008. The basics of remote sensing. Azadeh Press. 257 pp.( In Persian)
  10. Ghosh, P., Mukhopadhyay, A., Chanda, A., Mondal, P., Akhand, A., Mukherjee, S., and Hazra, S., 2017. Application of Cellular automata and Markov-chain model in geospatial environmental modeling-A review. Remote Sensing Applications: Society and Environment. 5, 64-77.
  11. Guan, D., Li, H., Inohae, T., Su, W., Nagaie, T. and Hokao, K., 2011 . Modeling urban land use change by the integration of cellular automaton and Markov model. Ecological Modelling. 222(20), 3761-3772.
  12. Hamad, R., Balzter, H. and Kolo, K., 2018. Predicting Land Use/Land Cover Changes Using a CA-Markov Model under Two Different Scenarios. Sustainability, 10(10), 3421.
  13. Han, J., Hayashi, Y., Cao, X. and Imura, H., 2009 .Application of an integrated system dynamics and cellular automata model for urban growth assessment: a case study of Shanghai, China”, Landscape and Urban Planning. 91, 133 - 141.
  14. Hu, Z. and Lo, C., 2007 . Modeling urban growth in Atlanta using logistic regression. Computers”, Environment and Urban Systems. 31, 667 - 688.
  15. Ildemi, A.R, Noori, H., Naderi, M., Aghabeig, S. and Zanee Vand, H., 2018. Land use change prediction using Markov chain and CA Markov Model (Case Study: Gareen Watershed) . Journal of Watershed Management Research. 8 (16) :232-240.( In Persian)
  16. Jokar Arsanjani, J, Kainz, W. and Mousivand, A., 2011 . Tracking dynamic land use change using spatially explicit Markov Chain based on cellular automata: the case of Tehran,, International Journal of Image and Data Fusion. 2, 329-345.
  17. Kamusoko, C., Aniya, M., Adi, B. and Manjoro, M.R., 2009 . Rural sustainability under threat in Zimbabwe e simulation of future land use/cover changes in the Bindura district based on the Markov-cellular automata model , Applied Geog- raphy. 29, 435- 447.
  18. Karimi, M. 2010. Development of Multi-criteria Analysis Methods for Land Use Allocation. Ph.D. Thesis. Khaje Nasir Tusi University.( In Persian)
  19. Liu, X.P., Li, X., Shi, X., Wu, S.K. and Liu, T., 2008 . Simulating complex urban development using kernel-based non-linear cellular automata”. Ecol. Model. 211, 169–181.
  20. Lopez, E., Boccoa, G., Mendozaa, M., and Duhau, E. 2001 . Predicting land-cover and land-use change in the urban fringe, A case in Morelia city, Mexico”, Landscape Urban Planning, 55: 271-285.
  21. Lu, Q., Chang, N. B., Joyce, J., Chen, A. S., Savic, D.A., Djordjevic, S. and Fu, G., 2018. Exploring the potential climate change impact on urban growth in London by a cellular automata-based Markov chain model. Computers, Environment and Urban Systems. 68, 121-132.
  22. Malczewski, J., 2004 . GIS-based land-use suitability analysis: a critical overview. Progress in Planning. 62(1), 3-65.
  23. March, H., Therond, O. and Leenhardt, D., 2012 . Water futures: Reviewing water-scenario analyses through an original interpretative framework. Ecological Economics 82, 126– 137.
  24. Mombeni, M. and Asgari, H.R, 2018. Monitoring, assessment and prediction of spatial changes of Land Use /Cover using Markov Chain Model (Case study: Shushtar- Khuzestan). Scientific - Research Quarterly of Geographical Data (SEPEHR). 27(105), 35-47.( In Persian)
  25. Oñate-Valdivieso, F. and Sendra, J.B., 2010 , Application of GIS and Remote Sensing Techniques in Generation of Land Use Scenarios for Hydrological Modeling, Journal of Hydrology. 395(3-4), 256-263.
  26. O'Sullivan, D. and Unwin, D.J., 2003 . Geographic information analysis: John Wiley and Sons.
  27. Pontius, R.G and Schneider, L.C. 2001. Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA. Agriculture, Ecosystems and Environment. 85 (1-3), 239-248
  28. Pontius, R.G., 2000 . Quantification error versus location error in comparison of categorical maps. Photogrammetric engineering and remote sensing. 66(8), 1011-1016.
  29. Pontius. R.G. and Millones, M., 2008. Problems and solutions for kappa-based indices of agreement. Studying, Modeling and Sense Making of Planet Earth. Mytilene. Greece.
  30. Pontius. R. G., Walker, R., Yao-Kumah, R., Arima, E., Aldrich, S., Caldas, M. and Vergara, D., 2007. Accuracy Assessment for a Simulation Model of Amazonian Deforestation. Annals of the Association of American Geographers. 97, 4.
  31. Rahnama, M., Ajza Shokouhi, M. and Ata, B., 2017. Detection of land use / land cover changes in Gonbad-e-Kavus City using remote sensing. Scientific- Research Quarterly of Geographical Data (SEPEHR). 26(103), 147-160. ( In Persian)
  32. Raheli Namin, B. and Mortazavi, S., 2018. Predicting the spatial land use changes and development of residential areas using CA_MARKOV‎ and GEOMOD‎ methods. Case study: Ghara-su basin, Golestan Province. geographical space journal. (62) 18, 159-169. .( In Persian)
  33. Ramezani N., Jafari, R., 2014. Land use and land cover change detection in 1404 using CA Markov chain model (Case study: Esfaraien). Journal of Geographic Research. 29(4), 115 .( In Persian)
  34. Reza Zadeh, R. and Mir Ahmadi, M., 2009. Cellular Automata Model, A New Approach to the Simulation of Urban Growth, Journal of Technology Education. 1, 47-55( In Persian)
  35. Rimal, B., Zhang, L., Keshtkar, H., Wang, N. and Lin, Y., 2017. Monitoring and modeling of spatiotemporal urban expansion and land-use/land-cover change using integrated markov chain cellular automata model. ISPRS International Journal of Geo-Information. 6(9), 288.
  36. Rounsevell, M.D.A., Reginster, I., Arau´jo, M.B., Carter, T.R., Dendoncker, N., Ewert, F., House, J.I., Kankaanpa¨a¨,S., Leemans, R., Metzger, M.J., Schmit, C., Smith, P. and Tuck, G., 2006 . A coherent set of future land use change scenarios for Europe. Agriculture, Ecosystems and Environment. 114, 57–68.
  37. Sang, L., Zhang, C., Yang, J., Zhu, D. and Yun, W., 2011. Simulation of land use spatial pattern of towns and villages based on CA–Markov model. Mathematical and Computer Modelling, 54(3-4), 938-943.
  38. Sardashty, M., Ghanavati, A., Zahiyan, P., Murshid,. 2010. Detection of land use change in the Taleghan watershed from 1987 to 2002 using Landsat satellite imagery and Remote Sensing, Ninth National Geomatics Conference. Tehran.( In Persian)
  39. Shaï‌zadeh Moghadam , H, Helbich, M., 2013 . Spatiotemporal urbanization processes in the megacity of Mumbai, India: A Markov chains-cellular automata urban growth model”, Applied Geography, 40;140-149. http://dx.doi.org/10.1016/j.apgeog.2013.01.009
  40. Soe W M and Le W ., 2006 .Multicriteria decision approach for land use and land cover change using Markov chain analysis and a cellular automata approach, Canadian J.Rem. Sens. 32 390–404.
  41. Sohl, T.L., Sleeter, B.M., Sayler, K.L., Bouchard, M.A., Reker, R.R., Bennett, S.L., Sleeter, R.R., Kanengieter, R.L., Zhu, Z., 2012 . Spatially explicit land-use and land-cover scenarios for the United States. Agriculture, Ecosystems and Environment :153, 1– 15.
  42. Taheri, m.; Ghulam Ali Fard, M. , Reyahi Bakhtiari, AS. R Rahim Oghli Sh., 2013. Modeling of Land Cover Changes in Tabriz City Using Artificial Neural Network and Markov Chain. Natural Geography Research, 45(4), pp. 97-112.( In Persian).
  43. Taleshi M, Afrakhteh H, Rahimipour Sheikhaninejad M A, 2018. Monitoring and simulation of land cover pattern in rural areas of East Guilan using Markov chain model & cellular automata. geographical space journal. (61)18 :295-316.( In Persian).
  44. Thapa, R.B. and Murayama, Y., 2011 . Urban growth modeling of Kathmandu metropolitan region, Nepal. Computers, Environment and urban systems, Vol. 35, No. 1, PP. 25-34.
  45. Thomas, H., Laurence, H.M., 2006 . Modelling and projecting land-use and land-cover changes with a cellular automaton in considering landscape trajectories: an improvement for simulation of plausible future states’. EARSeL eProceedings 5:63–76.
  46. Vaz, E., Nijkamp, P., Painho, M., and Caetano, M., 2012 . A multi-scenario forecast of urban change: a study on urban growth in the Algarve”, Landscape and Urban Planning, 104: 201- 211.
  47. Verburg, P.H., Schot, P.P., Dijst, M.J. and Veldkamp, A., 2004 . Land Use Change Modeling: Current Practice and Research Priorities, Geo Journal, Vol. 61, No. 4, PP. 309-324.
  48. zahheri, M. 2008., The Role of the Propagation of the City of Tabriz in the Making of Land Use Change in the Suburbs and Peninsula Areas (Case Study: Elwasfli, Marawab Gardens, Shadabad Mishiikh and Kandrud Villages), Geography and Development journal, No. 11.( In 6).